已知椭圆E的长轴长与焦距比为2:1,左焦点F(﹣2,0),一定点为P(﹣8,0).
(1)求椭圆E的标准方程;
(2)过P的直线与椭圆交于P1、P2两点,设直线P1F、P2F的斜率分别为k1、k2,求证:k1+k2=0.
(3)求△P1P2F面积的最大值.
(本小题满分14分)
已知抛物线的顶点为坐标原点,焦点在
轴上. 且经过点
,
(1)求抛物线的方程;
(2)若动直线过点
,交抛物线
于
两点,是否存在垂直于
轴的直线
被以
为直径的圆截得的弦长为定值?若存在,求出
的方程;若不存在,说明理由.
(本小题满分14分)
已知曲线:
,数列
的首项
,且当
时,点
恒在曲线
上,数列
满足
。
(1)试判断数列是否是等差数列?并说明理由;
(2)求数列和
的通项公式;
(3)设数列满足
,试比较数列
的前
项和
与2的大小。
(本小题满分14分)
如图,沿等腰直角三角形的中位线
,将平面
折起,平面
⊥平面
,得到四棱锥
,
,设
、
的中点分别为
、
,
(1)求证:平面⊥平面
(2)求证:
(3)求平面与平面
所成锐二面角的余弦值。
(本小题满分12分)
甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得
分,比赛进行到有一人比对方多
分或打满
局时停止.设甲在每局中获胜的概率为
,且各局胜负相互独立.若第二局比赛结束时比赛停止的概率为
.
(1)求的值;
(2)设表示比赛停止时比赛的局数,求随机变量
的分布列和数学期望
。
(本小题满分14分)如图所示,已知以点为圆心的圆与直线
相切.过点
的动直线
与圆
相交于
,
两点,
是
的中点,直线
与
相交于点
.
(1)求圆的方程;
(2)当时,求直线
的方程.
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.