(本小题满分14分)已知抛物线的顶点为坐标原点,焦点在轴上. 且经过点,(1)求抛物线的方程;(2)若动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.
已知等差数列中满足,. (1)求和公差; (2)求数列的前10项的和.
已知抛物线的顶点在坐标原点,焦点在轴上,抛物线上的点到的距离为2,且的横坐标为1.直线与抛物线交于,两点. (1)求抛物线的方程; (2)当直线,的倾斜角之和为时,证明直线过定点.
设数列满足前项和. (1)求数列的通项公式; (2)求数列的前项和.
已知四棱锥的底面是正方形,底面,是上的任意一点. (1)求证:平面平面; (2)当时,求二面角的大小.
在中,角所对的边分别为,且,. (1)求的值; (2)若,,求三角形ABC的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号