观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.
(1)等比数列5、﹣15、45、…的第4项是 .
(2)如果一列数a1,a2,a3,a4是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3
则:a5= .(用a1与q的式子表示)
(3)一个等比数列的第2项是10,第4项是40,求它的公比.
为了测量某风景区内一座塔AB的高度,某人分别在塔的对面一楼房CD的楼底C、楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度。(结果精确到0.1m)(参考数据≈1.41,
≈1.73)
解方程
(1)(4x-1)2-9=0
(2)x2―3x―2=0
如图,二次函数y=-x2+nx+n2-9(n为常数)的图像经过坐标原点和x轴上另一点A,顶点在第一象限.
(1)求n的值和点A坐标;
(2)已知一次函数y=-2x+b(b >0)分别交x轴、y轴于M、N两点.点P是二次函数图像的y轴右侧部分上的一个动点,若PN⊥NM于N点,且△PMN与△OMN相似,求点P坐标.
如图,在平面直角坐标系xOy中,⊙C经过点O,交x轴的正半轴于点B (2,0),P是上的一个动点,且∠OPB=30°.设P点坐标为(m,n).
(1)当n=2,求m的值;
(2)设图中阴影部分的面积为S,求S与n之间的函数关系式,并求S的最大值;
(3)试探索动点P在运动过程中,是否存在整点P(m,n)(横、纵坐标都为整数的点叫整点)?若存在,请求出;若不存在,请说明理由.
如图,折叠矩形ABCD的一边AD使点D落在BC边上的E处,已知折痕AF=10cm,且tan∠FEC=.
(1)求矩形ABCD的面积;
(2)利用尺规作图求作与四边形AEFD各边都相切的⊙O的圆心O(只须保留作图痕迹),并求出⊙O的半径.