某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:
(1)计算两班的优秀率.
(2)求两班比赛成绩的中位数.
(3)估计两班比赛数据的方差哪一个小?
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的由.
解分式方程:(本题6分)
解分式方程:(本题6分)
计算(本题5分)÷
如图,已知中,
,
,
,
是
边上的中点,
是
边上的点(不与端点重合),
是
边上的点,且
∥
,延长
与直线
相交于点
,
点是
延长线上的点,且
,联结
,设
,
.
(1)求关于
的函数关系式及其定义域;
(2)联结,当以
为半径的
和以
为半径的
外切时,求
的正切值;
(3)当与
相似时,求
的长.
已知一次函数的图像和二次函数
的图像都经过A、B两点,且点A在y轴上,B点的纵坐标为5.
(1)求这个二次函数的解析式;
(2)将此二次函数图像的顶点记作点P,求△ABP的面积;
(3)已知点C、D在射线AB上,且D点的横坐标比C点的横坐标大2,点E、F在这个二次函数图像上,且CE、DF与y轴平行,当∥
时,求C点坐标.