游客
题文


为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下面表中所示:

是否需要帮助 性别


合计
需要
50
25
75
不需要
200
225
425
合计
250
250
500

(1)请根据上表的数据,估计该地区老年人中,需要志愿者提供帮助的老年人的比例;]
(2)能否在出错的概率不超过1%的前提下,认为该地老年人是否需要帮助与性别有关?并说明理由;
(3)根据(2)的结论,你能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?并说明理由.
附:独立性检验卡方统计量,其中为样本容量,独立性检验临界值表为:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

 

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

.
(1)若的单调区间及的最小值;
(2)若,求的单调区间;
(3)试比较的大小.,并证明你的结论.

:已知函数
(1)若,且关于的方程有两个不同的正数解,求实数的取值范围;
(2)设函数满足如下性质:若存在最大(小)值,则最大(小)值与无关.试求的取值范围.

:数列满足:.
(Ⅰ)若数列为常数列,求的值;
(Ⅱ)若,求证:;(Ⅲ)在(Ⅱ)的条件下,求证:数列单调递减.

:已知椭圆P的中心O在坐标原点,焦点在x坐标轴上,且经过点,离心率为
(1)求椭圆P的方程:
(2)是否存在过点E(0,-4)的直线l交椭圆P于点R,T,且满足.若存在,求直线l的方程;若不存在,请说明理由.

:如图,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)求三棱锥E-PAD的体积;
(2)点E为BC的中点时,试判断EF与平面PAC的位置
关系,并说明理由;
(3)证明:无论点E在BC边的何处,都有PE⊥AF.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号