游客
题文

已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针方向旋转角得到点
(1)已知平面内点,点。把点绕点沿逆时针旋转后得到点,求点的坐标;
(2)设平面内直线上的每一点绕坐标原点沿逆时针方向旋转后得到的点组成的直线方程是,求原来的直线方程。

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分12分)如图,在三棱锥P-ABC中,,点分别是AC、PC的中点,底面ABC.
(1)求证:平面
(2)当时,求直线与平面所成的角的大小;
(3)当取何值时,在平面内的射影恰好为的重心?






(本小题满分12分)
道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望。
(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的。依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率(列式)。

(本小题满分10分)已知函数(其中为正常数,)的最小正周期为
(1)求的值;
(2)在△中,若,且,求

已知动圆过点,且与相内切.
(1)求动圆的圆心的轨迹方程;
(2)设直线(其中与(1)中所求轨迹交于不同两点D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

已知函数
(1)当时,求函数的极小值;
(2)试讨论函数零点的个数。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号