(本小题满分14分)
如图4,已知四棱锥,底面
是正方形,
面
,点
是
的中点,点
是
的中点,连接
,
.
(1)求证:面
;
(2)若,
,求二面角
的余弦值.
(本小题满分12分)
某市四所中学报名参加某高校今年自主招生的学生人数如下表所示:
中学 |
![]() |
![]() |
![]() |
![]() |
人数 |
![]() |
![]() |
![]() |
![]() |
为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四
所中学的学生当中随机抽取50名参加问卷调查.
(1)问四所中学各抽取多少名学生?
(2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;
(3)在参加问卷调查的名学生中,从来自
两所中学的学生当中随机抽取两名学生,用
表示抽得
中学的学生人数,求
的分布列.
(本小题满分12分)
已知的内角
的对边分别是
,且
.
(1) 求的值; (2) 求
的值.
(本小题满分14分)已知,
1)若,求方程
的解;
2)若对在
上有两个零点,求
的取值范围.
(本小题满分14分)设椭圆与抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1)求,
的标准方程, 并分别求出它们的离心率
;
2)设直线与椭圆
交于不同的两点
,且
(其中
坐标原点),请问是否存在这样的直线
过抛物线
的焦点
若存在,求出直线
的方程;若不存在,请说明理由.