某百货大搂服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.
(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
(2)用配方法说明:要想盈利最多,每件童装应降价多少元?
如图, 的平分线交 的外接圆于点 , 的平分线交 于点 .
(1)求证: ;
(2)若 , ,求 外接圆的半径.
如图,两座建筑物的水平距离 ,从 点测得 点的俯角 为 ,测得 点的俯角 为 ,求这两座建筑物的高度.
为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了 名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:
学生最喜爱的节目人数统计表
节目 |
人数(名 |
百分比 |
最强大脑 |
5 |
|
朗读者 |
15 |
|
中国诗词大会 |
|
|
出彩中国人 |
10 |
|
根据以上提供的信息,解答下列问题:
(1) , , ;
(2)补全上面的条形统计图;
(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.
如图,已知抛物线 与 轴交于点 ,与 轴交于点 ,点 是线段 上方抛物线上的一个动点.
(1)求这条抛物线的表达式及其顶点坐标;
(2)当点 移动到抛物线的什么位置时,使得 ,求出此时点 的坐标;
(3)当点 从 点出发沿线段 上方的抛物线向终点 移动,在移动中,点 的横坐标以每秒1个单位长度的速度变动;与此同时点 以每秒1个单位长度的速度沿 向终点 移动,点 , 移动到各自终点时停止.当两个动点移动 秒时,求四边形 的面积 关于 的函数表达式,并求 为何值时, 有最大值,最大值是多少?
如图, 是 的外接圆, 点在 边上, 的平分线交 于点 ,连接 、 ,过点 作 的平行线,与 的延长线相交于点 .
(1)求证: 是 的切线;
(2)求证: ;
(3)当 , 时,求线段 的长.