已知正方形ABCD中,AB=BC=CD=AD=10cm,动点P,Q分别从点B,C同时出发沿正
方形的四周运动.设点P的运动速度为2cm/s,点Q的运动速度为3cm/s,设点P,Q运动的时间为t(s)
(1)若点P,Q作相向运动,且它们第一次相遇在AD边上,求t的值.
(2)在(1)中点P,Q第一次相遇后继续运动,到第2次相遇,第3次相遇,…,求第100次相遇时,
相遇地点在正方形ABCD哪条边上,请写出计算过程.
(3)若点P,Q作同向运动,求它们相遇时t的值.
如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为 .
用适当的方法解下列方程:
(1)
(2)
计算
(1)(-
)0-
+
(2)
如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x轴,y轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.
(1)若点M的坐标为(3,4),
①求A,B两点的坐标;
②求ME的长.
(2)若,求∠OBA的度数.
(3)设tan∠OBA=x(0<x<1),,直接写出y关于x的函数解析式.
请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题.
为解方程,我们可以将
视为一个整体,然后设
,则原方程可化为
①
解得,
,当y=1时,
,∴
,
;
当y=4时,,∴
,
,∴原方程的解为
=
,
=-
,
=
,
=-
.
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用_________法达到了降次的目的,体现了_________的数学思想.
(2)解方程.