如图,在△ABC中,A(-2,3)、B(-3,1)、C(-1,2).
(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1.
(2)画出△ABC关于x轴对称的△A2B2C2.
(3)将△ABC绕着原点O旋转180°,画出旋转后的△A3B3C3.
(4)△A1B1C1与△A3B3C3关于点 成 对称(填“轴对称”或“中心对称”).
已知、
两点是一次函数
和反比例函数
图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求的面积;
(3)观察图象,直接写出不等式的解集.
如图,某人为了测量小山顶上的塔的高,他在山下的点
处测得塔尖点
的仰角为
,再沿
方向前进
到达山脚点
,测得塔尖点
的仰角为
,塔底点
的仰角为
,求塔
的高度.(结果保留根号)
小明随机调查了若干市民租用共享单车的骑车时间(单位:分),将获得的数据分成四组,绘制了如下统计图
,
,
,
,根据图中信息,解答下列问题:
(1)这项被调查的总人数是多少人?
(2)试求表示组的扇形统计图的圆心角的度数,补全条形统计图;
(3)如果小明想从组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
如图,平分
,
,垂足为点
,
.
求证:是等腰三角形.
如图1,已知二次函数 、 、 为常数, 的图象过点 和点 ,函数图象最低点 的纵坐标为 ,直线 的解析式为 .
(1)求二次函数的解析式;
(2)直线 沿 轴向右平移,得直线 , 与线段 相交于点 ,与 轴下方的抛物线相交于点 ,过点 作 轴于点 ,把 沿直线 折叠,当点 恰好落在抛物线上点 时(图 ,求直线 的解析式;
(3)在(2)的条件下, 与 轴交于点 ,把 绕点 逆时针旋转 得到△ , 为 上的动点,当△ 为等腰三角形时,求符合条件的点 的坐标.