选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线
交于A,B两点.
(1)求的长;
(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.
已知椭圆方程为
,左、右焦点分别是
,若椭圆
上的点
到
的距离和等于
.
(Ⅰ)写出椭圆的方程和焦点坐标;
(Ⅱ)设点是椭圆
的动点,求线段
中点
的轨迹方程;
(Ⅲ)直线过定点
,且与椭圆
交于不同的两点
,若
为锐角(
为坐标原点),求直线
的斜率
的取值范围.
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至
月份每月
号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
昼夜温差![]() |
10 |
11 |
13 |
12 |
8 |
6 |
就诊人数![]() |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的
组数据求线性回归方程,再用被选取的
组数据进行检验.
(Ⅰ)求选取的组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是月与
月的两组数据,请根据
至
月份的数据,求出
关于
的线性回归方程
;(其中
)
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的.试问该小组所得线性回归方程是否理想?
如图,长方体中,
,
,点
在
上,且
.
(Ⅰ)证明:平面
;
(Ⅱ)求二面角的余弦值.
已知动点到
的距离比它到
轴的距离多一个单位.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)过点作曲线
的切线
,求切线
的方程,并求出
与曲线
及
轴所围成图形的面积
.
已知:“直线
与圆
相交”;
:“方程
的两根异号”.若
为真,
为真,求实数
的取值范围.