在
中,
,
,
分别是角
,
,
的对边,
且
.
(1)求
的面积;
(2)若
,求角
.
(本小题满分14分)
设函数
的定义域为R,当x<0时,
>1,且对任意的实数x,y∈R,有
.
(1)求
,判断并证明函数
的单调性;
(2)数列
满足
,且
,
①求
通项公式;
②当
时,不等式
对不小于2的正整数
恒成立,求x的取值范围.
(本小题满分14分)
已知椭圆
的焦点F与抛物线C:
的焦点关于直线x-y=0
对称.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知定点A(a,b),B(-a,0)(ab
),M是抛物线C上的点,设直线AM,
BM与抛物线的另一交点为
.求证:当M点在抛物线上变动时(只要
存在
且
)直线
恒过一定点,并求出这个定点的坐标.
(本小题满分14分)
已知
,
(
),直线
与函数
、
的图像都相切,且与函数
的图像的切点的横坐标为1.
(1)求直线
的方程及
的值;
(2)若
(其中
是
的导函数),求函数
的最大值;
(3)当
时,比较
与
.
(本小题满分14分)
如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF
⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设M在线段AB上,且满足AM=2MB,试
在线段CE上确定一点N,使得MN∥平面DAE.
(本小题满分12分)
已知集合
,在平面直角坐标系中,点
的坐标x∈A,y∈A.计算:
(1)点
正好在第二象限的概率;
(2)点
不在x轴上的概率;
(3)点
正好落在区域
上的概率.