某厂商调查甲、乙两种不同型号电视机在10 个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.
为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求的概率;
(3)若,记乙型号电视机销售量的方差为
,根据茎叶图推断
为何值时,
达到最小值.(只需写出结论)
(注:方差,其中
为
,
,…,
的平均数)
(本小题满分12分)
(1)写出命题“若,则
”的逆命题、否命题及逆否命题;
(2)写出命题“”的否定形式.
(本小题满分10分)已知全集,集合
,集合
,
求:;
;
.
(本小题满分12分) 已知中心为坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点;
(1)求椭圆C的标准方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在求出直线方程;若不存在说明理由。
(本小题满分12分)已知F1、F2是椭圆的两个焦点,P是椭圆上任意一点.
(1)若∠F1PF2=,求△F1PF2的面积;
(2)求PF1·PF2的最大值.
(本小题满分12分)已知椭圆经过点A(0,4),离心率为
;
(1)求椭圆C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标。