已知函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)将函数的图象向右平移
个单位长度,再向下平移
(
)个单位长度后得到函数
的图象,且函数
的最大值为2.
(ⅰ)求函数的解析式;
(ⅱ)证明:存在无穷多个互不相同的正整数,使得
.
(本题满分15分)
已知函数,
(
),函数
(Ⅰ)当时,求函数
的单调区间和最大、最小值;
(Ⅱ)求证:对于任意的,总存在
,使得
是关于
的方程
的解;并就
的取值情况讨论这样的
的个数。
.(本题满分14分)
已知数列的前
项和是
,且
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求适合方程
的
的值。
(本题满分14分)
在多面体中,点
是矩形
的对角线的交点,三角形
是等边三角形,棱
且
.
(Ⅰ)证明:平面
;
(Ⅱ)设,
,
,
求与平面
所成角的正弦值。
(本题满分14分)
已知向量,
(其中
为正常数)
(Ⅰ)若,求
时
的值;
(Ⅱ)设,若函数
的图像的相邻两个对称中心的距离为
,求
在区间
上的最小值。
(1)(本小题满分7分)
选修4-4:矩阵与变换
已知矩阵,A的一个特征值
,其对应的特征向量是
.
(Ⅰ)求矩阵;
(Ⅱ)求直线在矩阵M所对应的线性变换下的像的方程
(2)
(本小题满分7分)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
,
求直线l与曲线C相交所成的弦的弦长.
((3)(本小题满分7分)
选修4-5:不等式选讲解不等式∣2x-1∣<∣x∣+1