某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为.
专业 性别 |
中文 |
英语 |
数学 |
体育 |
男 |
![]() |
1 |
![]() |
1 |
女 |
1 |
1 |
1 |
1 |
现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同).
(Ⅰ)求的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量
的分布列及其数学期望
.
已知平面五边形关于直线
对称(如图(1)),
,
,将此图形沿
折叠成直二面角,连接
、
得到几何体(如图(2))
(1)证明:平面
;
(2)求平面与平面
的所成角的正切值.
已知是等比数列
的前
项和,
、
、
成等差数列,且
.
(1)求数列的通项公式;
(2)是否存在正整数,使得
?若存在,求出符合条件的所有
的集合;若不存在,说明理由.
已知,设
:函数
在
上单调递减;
:函数
在
上为增函数.
(1)若为真,
为假,求实数
的取值范围;
(2)若“且
”为假,“
或
”为真,求实数
的取值范围.
在锐角中,角
,
,
对应的边分别是
,
,
.已知
.
(1)求角的大小;
(2)若的面积
,
,求
的值.
(1)平面过坐标原点
,
是平面
的一个法向量,求
到平面
的距离;
(2)直线过
,
是直线
的一个方向向量,求
到直线
的距离.