某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为.
专业 性别 |
中文 |
英语 |
数学 |
体育 |
男 |
![]() |
1 |
![]() |
1 |
女 |
1 |
1 |
1 |
1 |
现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同).
(Ⅰ)求的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量
的分布列及其数学期望
.
(本小题满分14分)已知等差数列的各项均为正数,
,前n项和为Sn,数列
是等比数列,
(1)求数列的通项公式.
(2)求证:对一切
都成立.
(本小题满分14分)如图,平行四边形中,
,
,且
,
正方形和平面
成直二面角,
是
的中点.
(1)求证:.
(2)求证:平面
.
(3)求三棱锥的体积.
(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到如下的列联表:
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出,你有多大的把握认为是否喜欢打蓝球与性别有关?
附:(临界值表供参考)
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分12分)已知函数(
R).
(1)求的最小正周期和最大值.(2)若
为锐角,且
,求
的值.
已知函数,其中
.
若函数在
上有极大值0,求
的值;(提示:当且仅当
时,
)
(2) 讨论并求出函数在区间
上的最大值;
(3)在(1)的条件下设,对任意
,证明:不等式
恒成立.