某实验室一天的温度(单位:)随时间
(单位:
)的变化近似满足函数关系;
.
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11,则在哪段时间实验室需要降温?
已知双曲线的两个焦点为
的曲线C上.(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程
直线与椭圆
交于
,
两点,已知
,
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点
(
为半焦距),求直线
的斜率
的值;
在中,内角A,B,C所对的分别是a, b,c。已知a=2.c=
,
A=
.
(I)求sin C和b的值;
(II)求 (2A+
)的值.
设数列的前
项和
。
(1)求;
(2)证明:是等比数列;
如图,圆O1与圆O2的半径都是1,,过动点P分别作圆O1.圆O2的切线PM、PN(M.N分别为切点),使得
试建立适当的坐标系,并求动点P的轨迹方程