如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面⊥平面
;
(Ⅲ)求二面角的余弦值.
在直角坐标系中,点
到两点
,
的距离之和等于
,设点
的轨迹为
。
(1)求曲线的方程;
(2)过点作两条互相垂直的直线
分别与曲线
交于
和
。
①以线段为直径的圆过能否过坐标原点,若能求出此时的
值,若不能说明理由;
②求四边形面积的取值范围。
如图,在四棱锥中,底面
为平行四边形,
平面
,
在棱
上.
(I)当时,求证
平面
(II)当二面角的大小为
时,求直线
与平面
所成角的正弦值.
(本小题12分)
给定抛物线,
是抛物线
的焦点,过点
的直线
与
相交于
、
两点,
为坐标原点.
(Ⅰ)设的斜率为1,求以
为直径的圆的方程;
(Ⅱ)设,求直线
的方程.
已知关于x的二次函数
(1)设集合和
,从集合
中随机取一个数作为
,从
中随机取一个数作为
,求函数
在区间
上是增函数的概率;
(2)设点是区域
内的随机点,求函数
在区间
上是增函数的概率。
(本小题12分)
设△ABC的内角A,B,C所对的边长分别为a,b,c,且.
(Ⅰ)求角的大小;
(Ⅱ)若角,
边上的中线
的长为
,求
的面积.