选修4-1:几何证明选讲
如图,四边形是
的内接四边形,
的延长线与
的延长线交于点
,且
.
(Ⅰ)证明:;
(Ⅱ)设不是
的直径,
的中点为
,且
,证明:
为等边三角形.
设函数的图象在点
处的切线方程为
.
(1)求的值;
(2)求函数的单调递增区间,并求函数
在
上的最大值和最小值。
已知是首项为1,公差为2的等差数列,
表示
的前
项和。
(1)求及
;
(2)设数列的前
项和为
,求证:当
都有
成立。
如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A、B的一点.
(1)求证:平面PAC⊥平面PBC;
(2)若PA=AB=2,∠ABC=30°,求三棱锥P-ABC的体积.
为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,
将他们的候车时间(单位:分钟)作为样本分成5组,如表所示:
组别 |
候车时间 |
人数 |
一 |
[0,5) |
2 |
二 |
[5,10) |
6 |
三 |
[10,15) |
4 |
四 |
[15,20) |
2 |
五 |
[20,25) |
1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
已知函数,
.
(1)求的值;
(2)若,
,求