游客
题文

基本模型
如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF.
(1)模型拓展:
如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF;
(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;

科目 数学   题型 解答题   难度 中等
知识点: 相似三角形的判定与性质 二次函数的应用
登录免费查看答案和解析
相关试题

(本题12分)东方专卖店专销某种品牌的计算器,进价元/只,售价元/只.为了促销,专卖店决定凡是买只以上的,每多买一只,售价就降低元(例如,某人买只计算器,于是每只降价元,就可以按元/只的价格购买),但是最低价为元/只.
(1)求顾客一次至少买多少只,才能以最低价购买?
(2)写出当一次购买只时(),利润(元)与购买量(只)之间的函数关系式;
(3)有一天,一位顾客买了只,另一位顾客买了只,专卖店发现卖了只反而比卖了只赚的钱少,为了使每次卖得多赚钱也多,在其他促销条件不变的情况下,最低价元/只至少要提高到多少元?

(本题10分)如图,在□ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE∠CDE=∠BCE.

(1)求证:AD=CE;
(2)判断直线BC与⊙O的位置关系,并说明理由;
(3)若BC=3,DE=6,求BE的长.

(本题10分)在平面直角坐标系中,对于任意三点的“矩面积”,给出如下定义:“水平底”:任意两点横坐标差的最大值,“铅垂高”:任意两点纵坐标差的最大值,则“矩面积”
例如:三点坐标分别为,则“水平底”,“铅垂高”,“矩面积”
(1)已知点
①若三点的“矩面积”为,求点的坐标;
三点的“矩面积”的最小值为
(2)已知点,其中.若三点的“矩面积”的为,求的取值范围;

(本题10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?

(本题10分)如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.

(1)求证:△ABF≌△ECF;
(2)若∠AFC=2∠ABC,连接AC、BE.求证:四边形ABEC是矩形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号