已知关于x的方程x2-6x+m2-3m=0的一根为2.
(1)求5m2-15m-100的值;
(2)求方程的另一根.
完成证明并写出推理根据:
已知,如图,∠1=132o,∠=48o,∠2=∠3,
⊥
于
,
求证:⊥
.
证明:∵∠1=132o,∠ACB=48o,
∴∠1+∠ACB=180°
∴DE∥BC
∴∠2=∠DCB(____________________________)
又∵∠2=∠3
∴∠3=∠DCB
∴HF∥DC(____________________________)
∴∠CDB=∠FHB.(____________________________)
又∵FH⊥AB,
∴∠FHB=90°(____________________________)
∴∠CDB=________°.
∴CD⊥AB.(____________________________)
如图,点A在∠O的一边OA上.按要求画图并填空:
(1)过点A画直线AB ⊥OA,与∠O的另一边相交于点B;
(2)过点A画OB的垂线段AC,垂足为点C;
(3)过点C画直线CD∥OA ,交直线AB于点D;
(4)∠CDB=°;
(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为.
某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有两种型号的设备,其中每台的价格,月处理污水量如下表:
![]() |
![]() |
|
价格(万元/台) |
![]() |
![]() |
处理污水量(吨/月) |
240 |
200 |
经调查:购买一台型设备比购买一台
型设备多2万元,购买2台
型设备比购买3台
型设备少6万元.
(1)求的值.
(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.
(3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.
已知:,
,点
在
轴上,
.
(1)直接写出点的坐标;
(2)若,求点
的坐标.
解不等式组,并写出该不等式组的整数解.