为了测量某风景区内一座塔AB的高度,某人分别在塔的对面一楼房CD的楼底C、楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度。(结果精确到0.1m(参考数据≈1.41,
≈1.73)
已知:如图,在△ABC中,AC=10,求AB的长.
已知:如图,在⊙O中,弦交于点
,
.求证:
.
计算:
在平面直角坐标系中,抛物线
过点
,且与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.点D的坐标为
,连接CA,CB,CD.
(1)求证:;
(2)是第一象限内抛物线上的一个动点,连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出点E的坐标;
②连接CP,当△CDP的面积最大时,求点E的坐标.
如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.