如图,一次函数与反比例函数
的图象交于
、
两点.
(1)求、
两点的坐标和反比例函数的解析式;
(2)根据图象,直接写出当时
的取值范围;
(3)求的面积.
二次函数的图象经过点(﹣1,4),且与直线
相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).
(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.
(1)求证:FD是⊙O的一条切线;
(2)若AB=10, AC=8,求DF的长.
如图,一楼房AB后有一假山,其坡度为,山坡坡面上E点处有一休息亭,测的假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)
如图,在△ABC中,D,E分别是AB,AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?
为了了解学生在一年中的课外阅读量,九(1)班对九年级800名学生采用随机抽样的方式进行了问卷调查,调查的结果分为四种情况:A 10本以下,B 10~15本,C 16~20本,D 20本以上.根据调查结果统计整理并制作了如图所示的两幅统计图表:
(1)在这次调查中一共抽查了名学生;
(2)表中x,y的值分别为:x=,y=;
(3)在扇形统计图中,C部分所对应的扇形的圆心角是度;
(4)根据抽样调查结果,请估计九年级学生一年阅读课外书20本以上的学生人数.