某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:,
,…,
后得到如下频率分布直方图.
(Ⅰ)求分数在内的频率;
(Ⅱ)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分;
(Ⅲ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数.不低于90分的概率.
画出下列函数的图象:
(1)y=x2-2x ;
(2)f(x)=;
(3)y=x|2-x|.
画出下列函数的图象.
(1)y=2x-1,x∈Z,|x|≤2;
(2)y=2x2-4x-3(0≤x<3);
(3)y=(lgx+|lgx|).
已知函数和函数
,其中
为参数,且满足
.
(1)若,写出函数
的单调区间(无需证明);
(2)若方程在
上有唯一解,求实数
的取值范围;
(3)若对任意,存在
,使得
成立,求实数
的取值范围.
修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米.已知后面墙的造价为每米45元,其他墙的造价为每米180元,设后面墙长度为
米,修建此矩形场地围墙的总费用为
元.
(1)求的表达式;
(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
已知函数的部分图像如图所示.
(1)求的值;
(2)求函数的单调递增区间.