某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:,
,…,
后得到如下频率分布直方图.
(Ⅰ)求分数在内的频率;
(Ⅱ)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分;
(Ⅲ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数.不低于90分的概率.
(本小题满分14分)已知等差数列的前n项和为
,且
.数列
的前n项和为
,且
,
.
(1)求数列,
的通项公式;
(2)设, 求数列
的前
项和
.
已知函数.
(1)若函数为偶函数,求
的值;
(2)若,求函数
的单调递增区间;
(3)当时,若对任意的
,不等式
恒成立,求实数
的取值范围.
(原创)已知数列{}是公比为
(
<0)的等比数列
⑴比较与
的大小;
⑵若,
,求使
恒成立的
取值范围.
已知椭圆:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
(本小题满分15分)如图所示,正方形与直角梯形
所在平面互相垂直,
,
,
.
(1)求证:平面
;
(2)求证:平面
;
(3)求四面体的体积.