已知函数(
),其中
是自然对数的底数.
(1)当时,求
的极值;
(2)若在
上是单调增函数,求
的取值范围;
(3)当时,求整数
的所有值,使方程
在
上有解.
已知数列前n项和为
数列
满足
对任意正整数n都成立,
(1)求数列的通项公式
与前n项和Tn的表达式;
(2)若对
恒成立,求k的最小值。
某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元,问:
(1)到第三年扣除购船费用和三年的各种费用,有获利吗?说明理由。
(2)到第几年总的纯收入(扣除购船费用和各年的各种费用后的收入)达到最大?最大纯收入是多少万元?
(13分)在的对边,已知
,
,又△ABC的面积
(1)求cosC的值;
(2)求△ABC的周长。
(13分)三棱锥P-ABC中,三条棱PC.AC.BC两两垂直,长都等于2,M为PA的中点,
(1)求异面直线CM与AB所成角θ的余弦值;
(2)过点M作一个与平面ABC平行的平面,将此三棱锥截成两部分,分别求这两部分的体积
(13分)在直角△ABC中AB=4,BC=3,AC=5,将此三角形绕AB边所在直线旋转一周得到一个圆锥
(1)求圆锥的侧面积和体积;
(2)求这个圆锥的内切球的表面积。