二次函数y=2x2+bx+c的图象经过点(2,1),(0,1).
(1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;
(2)若点P),Q
)在抛物线上,试判断y1与y2的大小.(写出判断的理由)
“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现万州人追梦的风采,我区某校开展了以“梦想中国,逐梦万州”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:
等级 |
成绩(用s表示) |
频数 |
频率 |
A |
90≤s≤100 |
x |
0.08 |
B |
80≤s<90 |
35 |
y |
C |
s<80 |
11 |
0.22 |
合 计 |
50 |
1 |
请根据上表提供的信息,解答下列问题:
(1)表中的x的值为 ,y的值为 。
(2)将本次参赛作品获得A等级的学生一次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率。
先化简,再求值:,其中x满足方程:x2+x﹣6=0。
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△.
(1)画出△,直接写出点
,
的坐标;
(2)在旋转过程中,点B经过的路径的长;
(3)求在旋转过程中,线段AB所扫过的面积.
如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.
(1)求证:AC是⊙O的切线;
(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.