选修4-4:极坐标系与参数方程 极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两坐标系的长度单位相同。已知曲线C的极坐标方程为,斜率为的直线交y轴于点E(0,1). (1)求曲线C的直角坐标方程,直线的参数方程; (2)若直线与曲线C交于A,B两点,求 的值。
设函数的最大值为,最小正周期为 (1)求、; (2)若有10个互不相等的正数满足 求的值.
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围。
已知顶点在坐标原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程。
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
已知椭圆C的两焦点分别为,长轴长为6。 ⑴求椭圆C的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号