若(
,
,已知点
,
是函数
图象上的任意两点,若
时,
的最小值为
,且函数
为奇函数.
(Ⅰ)求的值;
(Ⅱ)将函数的图象向右平移
个单位后,得到函数
的图象,求函数
的单调递增区间.
(本小题满分12分)
已知等比数列中,
,公比
.
(I)为
的前
项和,证明:
(II)设,求数列
的通项公式.
(本小题满分14分)
已知函数.
(Ⅰ)当时,求函数
的图象在
处的切线方程;
(Ⅱ)判断函数的单调性;
(Ⅲ)若函数在
上为增函数,求
的取值范围.
(本小题满分12分)
如图,圆与
轴相切于点
,与
轴正半轴相交于两点
(点
在点
的左侧),且
.
(Ⅰ)求圆的方程;
(Ⅱ)过点任作一条直线与椭圆
相交于
两点,连接
,求证:
.
(本小题满分12分)
已知四棱锥的三视图如图所示,
为正三角形.
(Ⅰ)在平面中作一条与底面
平行的直线,并说明理由;
(Ⅱ)求证:平面
;
(Ⅲ)求三棱锥的高.
(本小题满分12分)
甲、乙两家网络公司,1993年的市场占有率均为A,根据市场分析与预测,甲、乙公司自1993年起逐年的市场占有率都有所增加,甲公司自1993年起逐年的市场占有率都比前一年多,乙公司自1993年起逐年的市场占有率如图所示:
(I)求甲、乙公司第n年市场占有率的表达式;
(II)根据甲、乙两家公司所在地的市场规律,如果某公司的市场占有率不足另一公司市场占有率的20%,则该公司将被另一公司兼并,经计算,2012年之前,不会出现兼并局面,试问2012年是否会出现兼并局面,并说明理由.