在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅲ)求证CE∥平面PAB.
已知⊙过点
,且与⊙
:
关于直线
对称.(Ⅰ)求⊙
的方程;(Ⅱ)设
为⊙
上的一个动点,求
的最小值;(Ⅲ)过点
作两条相异直线分别与⊙
相交于
,且直线
和直线
的倾斜角互补,
为坐标原点,试判断直线
和
是否平行?请说明理由.
已知向量=(1+tanx,1-tanx),=(sin(x-),sin(x+)).
(1)求证:⊥;(2)若x∈[-,],求||的取值范围.
(本题满分共13分)已知正项数列,函数
。(1)若正项数列
满足
(
且
),试求出
由此归纳出通项
,并证明之;(2)若正项数列
满足
(
且
),数列
满足
,其和为
,求证
。
(本题满分共13分)已知函数(1)求函数
的单调递减区间;(2)当
时,函数
在
有零点,求
的最大值。