如图,在平面直角坐标系中,顶点为(,
)的抛物线交
轴于
点,交
轴于
,
两点(点
在点
的左侧).已知
点坐标为(
,
).
(1)求此抛物线的解析式;
(2)过点作线段
的垂线交抛物线于点
, 如果以点
为圆心的圆与直线
相切,请判断抛物线的对称轴
与⊙
有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于
,
两点之间,问:当点
运动到什么位置时,
的面积最大?并求出此时
点的坐标和
的最大面积.
(本小题满分9分)如图,四边形ABCD中AB∥CD,AB≠CD,BD=AC。
(1)求证:AD=BC;
(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相垂直平分。
(本小题满分8分)如图,在一面与地面垂直的围墙的同一侧有一根高10米的旗杆AB和一个高度未知的电线杆CD,它们都与地面垂直。为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米;而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米。依据这些数据,该小组的同学计算出了电线杆的高度。
(1)该小组的同学在这里利用的是____________投影的有关知识进行计算的;
(2)试计算出电线杆的高度,并写出计算的过程。
如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;
②当AE= cm时,四边形CEDF是菱形;(直接写出答案,不需要说明理由)
(贵州省安顺市)(本题12分)
如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F
(1)求证:AE=DF.
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
(内蒙古 呼 和 浩 特 )如图,ABCD的对角线AC、BD相交于点O,AE=CF.
(1)求证:△BOE ≌△DOF ;
(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.