如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
已知一次函数与反比例函数
的图象交于A(2,3), B(-6,n) 两点.
(1)求一次函数和反比例函数的解析式;
(2)P是y轴上一点,且,直接写出P点坐标.
已知,求代数式
的值.
求不等式组的整数解.
已知:如图,C为BE上一点, 点A、D分别在BE两侧,AB∥ED,∠ACB=∠CDE,BC=ED.求证:AC=CD.
如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。