如图,相距14km的两个居民小区M和N位于河岸l(直线)的同侧,M和N距离河岸分别为10km和8km.现要在河的小区一侧选一地点P,在P处建一个生活污水处理站,从P排直线水管PM,PN分别到两个小区和垂直于河岸的水管PQ,使小区污水经处理后排入河道.设PQ段长为t km(0 < t < 8).(1)求污水处理站P到两小区的水管的总长最小值(用t表示);(2)请确定污水处理站P的位置,使所排三段水管的总长最小,并求出此时污水处理站分别到两小区水管的长度.
(满分12) 设函数是以2为周期的函数,且时,, (1)、求 (2)、当时,求的解析式.
(满分10分) 求证:.
(满分10分) 已知,求下列各式的值:(1)(2)
(满分12分) 已知函数的最大值为,最小值为,求函数的最值.
(本小题满分14分) 已知函数,如果存在给定的实数对(),使得恒成立,则称为“S-函数”. (Ⅰ)判断函数是否是“S-函数”; (Ⅱ)若是一个“S-函数”,求出所有满足条件的有序实数对; (Ⅲ)若定义域为的函数是“S-函数”,且存在满足条件的有序实数对和,当时,的值域为,求当时函数的值域.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号