如图,在平面直角坐标系中,方程为的圆
的内接四边形
的对角线
互相垂直,且
分别在
轴和
轴上.
(1)若四边形的面积为40,对角线
的长为8,
,且
为锐角,求圆的方程,并求出
的坐标;
(2)设四边形的一条边
的中点为
,
,且垂足为
,试用平面解析几何的研究方法判断点
是否共线,并说明理由.
如图,平面 平面 ,四边形 与 都是直角梯形, 分别为 中点.
(Ⅰ)证明:四边形
是平行四边形;
(Ⅱ)
四点是否共面?为什么?
(Ⅲ)设
,证明:平面
平面
;
设进入某商场的每一位顾客购买甲种商品的概率为 ,购买乙种商品的概率为 ,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的3位顾客中至少有2位顾客既未购买甲种也未购买乙种商品的概率。
求函数 的最大值与最小值.
设 为实数,函数 .
(1)若 ,求 的取值范围;
(2)求 的最小值;
(3)设函数 ,直接写出(不需给出演算步骤)不等式 的解集.
按照某学者的理论,假设一个人生产某产品单件成本为
元,如果他卖出该产品的单价为
元,则他的满意度为
;如果他买进该产品的单价为
元,则他的满意度为
.如果一个人对两种交易(卖出或买进)的满意度分别为
和
,则他对这两种交易的综合满意度为
.
现假设甲生产
、
两种产品的单件成本分别为12元和5元,乙生产
、
两种产品的单件成本分别为3元和20元,设产品
、
的单价分别为
元和
元,甲买进
与卖出B的综合满意度为
,乙卖出
与买进
的综合满意度为
(1)求
和
关于
、
的表达式;当
时,求证:
=
;
(2)设
,当
、
分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为
,试问能否适当选取
、
的值,使得
和
同时成立,但等号不同时成立?试说明理由。