如图,在平面直角坐标系中,已知点A(2,3),B(6,3),连结AB,如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”.
(1)判断点C(,
)是否是线段AB的“邻近点” .
(2)若点Q(m,n)是线段AB的“邻近点”,则m的取值范围 .
如图,已知 , , .
求证: .
如图,已知抛物线 过点 , 和点 , .过点 作直线 轴,交 轴于点 .
(1)求抛物线的解析式;
(2)在抛物线上取一点 ,过点 作直线 的垂线,垂足为 .连接 ,使得以 , , 为顶点的三角形与 相似,求出对应点 的坐标;
(3)抛物线上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知 的顶点坐标分别为 , , .动点 , 同时从 点出发, 沿 , 沿折线 ,均以每秒1个单位长度的速度移动,当一个动点到达终点 时,另一个动点也随之停止移动,移动的时间记为 秒.连接 .
(1)求直线 的解析式;
(2)移动过程中,将 沿直线 翻折,点 恰好落在 边上点 处,求此时 值及点 的坐标;
(3)当点 , 移动时,记 在直线 右侧部分的面积为 ,求 关于时间 的函数关系式.
如图, 是 的直径,点 在 上(点 不与 , 重合),直线 交过点 的切线于点 ,过点 作 的切线 交 于点 .
(1)求证: ;
(2)若 ,求 的值.
如图,一次函数 的图象与反比例函数 的图象交于 , 两点,过 点作 轴的垂线,垂足为 , 面积为1.
(1)求反比例函数的解析式;
(2)在 轴上求一点 ,使 的值最小,并求出其最小值和 点坐标.