已知定义域为R的函数是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
已知函数在一个周期内的部分对应值如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(I)求的解析式;
(II)设函数,
,求
的最大值和最小值.
在某次综合素质测试中,共设有40个考室,每个考室30名考生.在考试结束后,为调查其测试前的培训辅导情况与测试成绩的相关性,抽取每个考室中座位号为05的考生,统计了他们的成绩,得到如图所示的频率分布直方图.
(Ⅰ)在这个调查采样中,用到的是什么抽样方法?
(Ⅱ)写出这40个考生成绩的众数、中位数(只写结果);
(Ⅲ)若从成绩在的考生中任抽取2人,求成绩在
的考生至少有一人的概率.
已知等差数列的前
项和为
,且
.
(I)求数列的通项公式;
(II)设等比数列,若
,求数列
的前
项和
.
在平面直角坐标系中,以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
,直线
的参数方程为
为参数,
).
(Ⅰ)化曲线的极坐标方程为直角坐标方程;
(Ⅱ)若直线经过点
,求直线
被曲线
截得的线段
的长.
已知矩阵,绕原点逆时针旋转
的变换所对应的矩阵为
.
(Ⅰ)求矩阵;
(Ⅱ)若曲线:
在矩阵
对应变换作用下得到曲线
,求曲线
的方程.