已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x﹣1)=f(3﹣x),且方程f(x)=2x有两等根.
(1)求f(x)的解析式.
(2)求f(x)在[0,t]上的最大值.
(3)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],
如果存在,求出m、n的值,如果不存在,说明理由.
某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为第二、第三门课程取得优秀成绩的概率分别为
且不同课程是否取得优秀成绩相互独立,记
为该生取得优秀成绩的课程数,其分布列为
![]() |
0 |
1 |
2 |
3 |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)求该生至少有1门课程取得优秀成绩的概率;
(2)求,
的值;
(3)求数学期望
已知四棱锥的底面
是边长为
的正方形,
底面
,
、
分别为棱
、
的中点.
(1)求证:平面
(2)已知二面角的余弦值为
求四棱锥
的体积.
已知:以点为圆心的圆与
轴交于点
、
与
轴交于点
、
其中
为原点.
(1)求证:的面积为定值;
(2)设直线与圆
交于点
、
若
求⊙
的方程.
在锐角中,角
的对边分别为
且
.
⑴求的值;
⑵求的取值范围.
已知椭圆,抛物线
,点
是
上的动点,过点
作抛物线
的切线
,交椭圆
于
两点,
(1)当的斜率是
时,求
;
(2)设抛物线的切线方程为
,当
是锐角时,求
的取值范围.