游客
题文

某省2015年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16).现从我校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5 cm之间,将测量结果按如下方式分成6组:第一组 [157.5,162.5),第二组[162.5,167.5),…,第6 组[182.5,187.5],下图是按上面分组方法得到的频率分布直方图.

(1)试评估我校高三年级男生在全省高中男生中的平均身高状况;
(2)求这50名男生身高在177.5cm以上(含177.5 cm)的人数;
(3)在这50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(以高到低)在全省前130名的人数记为,求的数学期望.
参考数据:若,则

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6

(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

已知角A,B,C是△ABC三边a,b,c所对的角,,且.
(I)若△ABC的面积S=,求b+c的值;
(II)求b+c的取值范围.

已知在等差数列{}中,=3,前7项和=28.
(I)求数列{}的公差d;
(II)若数列{}为等比数列,且求数列的前n项和.

设正有理数的一个近似值,令.
(Ⅰ)若,求证:
(Ⅱ)比较哪一个更接近,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号