游客
题文

已知椭圆的右焦点与抛物线的焦点F重合,椭圆与抛物线在第一象限的交点为P,
(1)求椭圆的方程;
(2)过点A(-1,0)的直线与椭圆相交于M,N两点,求使成立的动点R的轨迹方程.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知是定义在R上的奇函数,当时,.
(1)求的值;
(2)求的解析式;
(3)解关于的不等式,结果用集合或区间表示.

已知坐标平面上点与两个定点的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程

如图,在四棱锥中,底面
的中点.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面
(Ⅲ)求二面角的正弦值.

如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

平行四边形的两邻边所在直线的方程为x+y+1=0及3x-4=0,其对角线的交点是D(3,3),求另两边所在的直线的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号