设 .
(Ⅰ)令
,讨论
在
内的单调性并求极值;
(Ⅱ)求证:当
时,恒有
.
如图,在六面体
中,四边形
是边长为2的正方形,四边形
是边长为1的正方形,
,
,
.
(Ⅰ)求证:
共面,
共面;
(Ⅱ)求证:
;
(Ⅲ)求二面角
的大小(用反三角函数值表示).
已知0<a<的最小正周期,
求
.
已知函数
,
.
(I)证明:当
时,
在
上是增函数;
(II)对于给定的闭区间
,试说明存在实数
,当
时,
在闭区间
上是减函数;
(III)证明:
.
已知数列
,
与函数
,
,
满足条件:
,
.(
)
(I)若
,
,
存在,求
的取值范围;
(II)若函数
为
上的增函数,
,
,
,证明对任意
,
(用
表示).