选修4-4:坐标系与参数方程
已知曲线的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
为参数).
(1)求曲线的直角坐标方程和直线
的的普通方程;
(2)设点,若直线
与曲线
交于
两点,且
,求实数
的值.
在图一所示的平面图形中,是边长为
的等边三角形,
是分别以
为底的全等的等腰三角形,现将该平面图形分别沿
折叠,使
所在平面都与平面
垂直,连接
,得到图二所示的几何体,据此几何体解决下面问题.
(1)求证:;
(2)当时,求三棱锥
的体积
;
(3)在(2)的前提下,求二面角的余弦值.
不等式选讲
设
(1)当a=l时,解不等式;
(2)若恒成立,求正实数a的取值范围。
坐标系与参数方程
已知圆锥曲线为参数)和定点
F1,F2是圆锥曲线的左右焦点。
(1)求经过点F2且垂直于直线AF1的直线l的参数方程;
(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程。
如图,已知圆外有一点
,作圆
的切线
,
为切点,过
的中点
,作割线
,交圆于
、
两点,连接
并延长,交圆
于点
,连续
交圆
于点
,若
.
(1)求证:△∽△
;
(2)求证:四边形是平行四边形.
已知函数,其中
是自然对数的底数,
.
(1)若,求曲线
在点
处的切线方程;
(2)若,求
的单调区间;
(3)若,函数
的图象与函数
的图象有3个不同的交点,求实数
的取值范围.