已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
是椭圆
的右顶点与上顶点,直线
与椭圆相交于
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求
的值.
已知数列和
的通项公式分别为
,
.将
与
中的公共项按照从小到大的顺序排列构成一个新数列记为
.
(1)试写出,
,
,
的值,并由此归纳数列
的通项公式;
(2)证明你在(1)所猜想的结论.
一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验;若少于2件合格品,则不能通过检验,也不再抽检. 假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为元,求
的概率分布及数学期望.
设,且满足:
,
,求证:
.
已知曲线的参数方程为
(
为参数),曲线
在点
处的切线为
.以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,求
的极坐标方程.
已知直线在矩阵
对应的变换作用下变为直线
.
(1)求实数,
的值;
(2)若点在直线
上,且
,求点
的坐标.