游客
题文

为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月人住的游客人数,发现每年各个月份来客栈人住的游客人数会发生周期性的变化,并且有以下规律:
①每年相同的月份,人住客栈的游客人数基本相同;
②人住客栈的游客人数在2月份最少,在8月份最多,相差约400人;
③2月份人住客栈的游客约为100人,随后逐月递增直到8月份达到最多.
(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系;
(2)请问哪几个月份要准备400份以上的食物?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题14分)设
(1)当时,求曲线处的切线方程;
(2)如果存在,使得成立,
求满足上述条件的最大整数
(3)如果对任意的,都有成立,求实数的取值范围.

(本小题15分)已知椭圆的右焦点恰好是抛物线的焦点
是椭圆的右顶点.过点的直线交抛物线两点,满足
其中是坐标原点.
(1)求椭圆的方程;
(2)过椭圆的左顶点轴平行线,过点轴平行线,直线
相交于点.若是以为一条腰的等腰三角形,求直线的方程.

(本小题15分)如图,四棱锥的底面为一直角梯形,其中

底面的中点.
(1)求证://平面
(2)若平面
①求异面直线所成角的余弦值;
②求二面角的余弦值.

(本小题14分)已知函数的图像与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别

(1)求的解析式及的值;
(2)若锐角满足,求的值.

(本小题14分)从这九个数字中任意取出不同的三个数字.
(1)求取出的这三个数字中最大数字是的概率;
(2)记取出的这三个数字中奇数的个数为,求随机变量的分布列与数学期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号