如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=
.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.
如图,在正方体ABCD-A1B1C1D1中.
(1)若E为棱DD1上的点,试确定点E的位置,使平面A1C1E∥B1D;
(2)若M为A1B上的一动点,求证:DM∥平面D1B1C.
如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC, AB∥DC.
(1)求证:D1C⊥AC1;
(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.
已知A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}.
(1)若A⊆B,求a的取值范围;
(2)若B⊆A,求a的取值范围.
(本小题满分12分)如图所示,在多面体,四边形
,
均为正方形,
为
的中点,过
的平面交
于
(1)证明:;
(2)(理科做) 求二面角余弦值.
(3)(文科做) 若正方形边长为2,求多面体
的体积.