游客
题文

为了让学生了解更多“社会法律”知识,某中学举行了一次“社会法律知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:

分组
频数
频率
60.5~70.5

0.16
70.5~80.5
10
?②
80.5~90.5
18
0.36
90.5~100.5


合计
50
1

 
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为
000,001,002,…,799,试写出第二组第一位学生的编号     
(2)填充频率分布表的空格①                  并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

科目 数学   题型 解答题   难度 较易
知识点: 误差估计
登录免费查看答案和解析
相关试题

如图所示,在三棱柱ABC—A1B1C1中,四边形A1ABB1是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°.
(1)求证:平面CA1B⊥平面A1ABB1
(2)求直线A1C与平面BCC1B1所成角的正切值;
(3)求点C1到平面A1CB的距离.

如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.

在五棱锥P—ABCDE中,PA=AB=AE=2a,PB=PE=2a,BC=DE=a,∠EAB=∠ABC=
∠DEA=90°.
(1)求证:PA⊥平面ABCDE;
(2)求二面角A—PD—E的余弦值.

如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=

BC=1,PA=2,E为PD的中点.
(1)求直线AC与PB所成角的余弦值;
(2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.

已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点.
(1)求证:平面B1EF⊥平面BDD1B1
(2)求点D1到平面B1EF的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号