某电厂冷却塔外形是如图1-7-8所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′="14" m,CC′="18" m,BB′="22" m,塔高20 m.
图1-7-8
(1)建立坐标系并写出该曲线的方程;
(2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14).
作用于某一质点的力F(x)=求力所做的功.
设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成图形的面积.
如图1-7-9所示,从地面垂直发射质量为m的物体,计算物体从A点飞到B点的过程中,地球引力所做的功.若要物体飞离地球引力的范围,物体的初速度v0应为多少?
图1-7-9
设一物体从初速度为1时开始做直线运动,已知在任意时刻t时的加速度为s+1,将位移表示为时间t的函数式.