如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;
(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.
解不等式组,并求它的整数解.
钓鱼岛自古就是中国的领土,中国海监部门已对钓鱼岛及其附属岛屿开展常态化的监视监测.某日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(如图,设M、N为改岛的东西两端点)最近的距离为12海里(即MC=12海里).在A点测得岛屿的西端点M,在点A的东北方向;航行4海里后到达B点,测的岛屿的东端点N在点B的北偏东60°方向(其中M、N、C)在同一直线上,则钓鱼岛东西两端点MN之间的距离为多少海里?(结果精确到0.01海里,)
某小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?
在对某地区一次人口抽样统计中,各年龄段的人数如表所示(年龄为整数).请根据此表回答下列问题:
年龄 |
0~9 |
10~19 |
20~29 |
30~39 |
40~49 |
50~59 |
60~69 |
70~79 |
80~89 |
人数 |
9 |
11 |
17 |
18 |
17 |
12 |
8 |
6 |
2 |
(1)这次抽样的样本容量是;
(2)在这个样本中,年龄的中位数位于哪个年龄段内;
(3)在这个样本中,年龄在60岁以上(含60岁)的频率是;
(4)如果该地区有人口80 000,为关注人口老龄化问题,请估算该地区60岁以上(含60岁)的人口数.
盒子中有4个球,每个球上写有1~4中的一个数字,不同的球上数字不同.
(1)若从盒中取三个球,以球上所标数字为线段的长,则能构成三角形的概率是多少?
(2)若小明从盒中取出一个球,放回后再取出一个球,然后让小华猜两球上的数字之和,你认为小华猜和为多少时,猜中的可能性大.请说明理由.