游客
题文

小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:

①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;

②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1W2(单位:元).

(1)用含x的代数式分别表示W1W2

(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?

科目 数学   题型 解答题   难度 中等
知识点: 二次函数的应用
登录免费查看答案和解析
相关试题

如图,二次函数 y = ( x - 1 ) ( x - a ) ( a 为常数)的图象的对称轴为直线 x = 2

(1)求 a 的值.

(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.

如图是由边长为1的小正方形构成的 6 × 4 的网格,点 A B 均在格点上.

(1)在图1中画出以 AB 为边且周长为无理数的 ABCD ,且点 C 和点 D 均在格点上(画出一个即可).

(2)在图2中画出以 AB 为对角线的正方形 AEBF ,且点 E 和点 F 均在格点上.

(1)计算: ( 1 + a ) ( 1 - a ) + ( a + 3 ) 2

(2)解不等式组: 2 x + 1 < 9 3 - x 0

如图,在菱形 ABCD 中, ABC 是锐角, E BC 边上的动点,将射线 AE 绕点 A 按逆时针方向旋转,交直线 CD 于点 F

(1)当 AE BC EAF = ABC 时,

①求证: AE = AF

②连结 BD EF ,若 EF BD = 2 5 ,求 S ΔAEF S 菱形 ABCD 的值;

(2)当 EAF = 1 2 BAD 时,延长 BC 交射线 AF 于点 M ,延长 DC 交射线 AE 于点 N ,连结 AC MN ,若 AB = 4 AC = 2 ,则当 CE 为何值时, ΔAMN 是等腰三角形.

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号