游客
题文

如图,ABO的一条弦,EAB的中点,过点EECOA于点C,过点BO的切线交CE的延长线于点D

(1)求证:DB=DE

(2)若AB=12BD=5,求O的半径.

科目 数学   题型 解答题   难度 中等
知识点: 垂径定理 切线的性质 等腰三角形的性质 勾股定理
登录免费查看答案和解析
相关试题

为增强环境保护意识,争创“文明卫生城市”,某企业对职工进行了依次“生产和居住环境满意度”的调查,按年龄分组,得到下面的各组人数统计表:
各组人数统计表

组号
年龄分组
频数(人)
频率
第一组
20≤x<25
50
0.05
第二组
25≤x<30
a
0.35
第三组
35≤x<35
300
0.3
第四组
35≤x<40
200
b
第五组
40≤x≤45
100
0.1


(1)求本次调查的样本容量及表中的a、b的值;
(2)调查结果得到对生产和居住环境满意的人数的频率分布直方图如图,政策规定:本次调查满意人数超过调查人数的一半,则称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;
(3)从第二张和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.

如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.
习题解答:
习题 如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.
解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°﹣45°=45°=∠EAF,
又∵AE′=AE,AF=AF
∴△AE′F≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
习题研究
观察分析:观察图(1),由解答可知,该题有用的条件是①ABCD是四边形,点E、F分别在边BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=∠BAD.
类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?
研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?
(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180,∠EAF=∠BAD时,EF=BE+DF吗?
归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题: 在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180EAF=BAD时,则EF=BE+DF 

如图,直线L:y=﹣x+3与两坐标轴分别相交于点A、B.
(1)当反比例函数y=(m>0,x>0)的图象在第一象限内与直线L至少有一个交点时,求m的取值范围.
(2若反比例函数y=(m>0,x>0)在第一象限内与直线L相交于点C、D,当CD=时,求m的值.
(3)在(2)的条件下,请你直接写出关于x的不等式﹣x+3<的解集.

达州市凤凰小学位于北纬21°,此地一年中冬至日正午时刻,太阳光与地面的夹角最小,约为35.5°;夏至日正午时刻,太阳光的夹角最大,约为82.5°.己知该校一教学楼窗户朝南,窗高207cm,如图(1).请你为该窗户设计一个直角形遮阳棚BCD,如图(2),要求最大限度地节省材料,夏至日正午刚好遮住全部阳光,冬至日正午能射入室内的阳光没有遮挡.

(1)在图(3)中画出设计草图;
(2)求BC、CD的长度(结果精确到个位)(参考数据:sin35.5°≈0.58,cos35.5°≈0.81,tan35.5°≈0.71,sin82.5°≈0.99,cos82.5°≈0.13,tan82.5°≈7.60)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号