如图,是所对弦上一动点,过点作交于点,连接,过点作于点.已知,设、两点间的距离为,、两点间的距离为.(当点与点或点重合时,的值为
小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
|
0 |
2.0 |
2.3 |
2.1 |
|
0.9 |
0 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为 .
(6分)如图,AB∥CD,CE平分∠ACD,若∠1=25°,求∠2的度数。
抛物线交
轴于
、
两点,交
轴于点
,顶点为
.
(1)写出抛物线的对称轴及
、
两点的坐标(用含
的代数式表示)
(2)连接
并以
为直径作⊙
,当
时,请判断⊙
是否经过点
,并说明理由;
(3)在(2)题的条件下,点
是抛物线上任意一点,过
作直线垂直于对称轴,垂足为
. 那么是否存在这样的点
,使△
与以
、
、
为顶点的三角形相似?若存在,请求出点
的坐标;若不存在,请说明理由.
宏达纺织品有限公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额(万元)之间满足正比例函数关系:
;如果单独投资B种产品,则所获利润(万元)与投资金额
(万元)之间满足二次函数关系:
.根据公司信息部的报告,
,
(万元)与投资金额
(万元)的部分对应值(如下表)
(1)填空:
_______________________;
_______________________;
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为
(万元),试写出
与某种产品的投资金额x之间的函数关系式.
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;
(2)若EC=3,BD=
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.
定理:若、
是关于
的一元二次方程
的两实根,则有
,
.请用这一定理解决问题:已知
、
是关于
的一元二次方程
的两实根,且
,求
的值.