一次函数与二次函数的图象的一个交点坐标为,另一个交点是该二次函数图象的顶点.
(1)求,,的值;
(2)过点,且垂直于轴的直线与二次函数的图象相交于,两点,点为坐标原点,记,求关于的函数解析式,并求的最小值.
如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM^直线a于点M,CN^直线a于点N,连接PM、PN延长MP交CN于点E(如图2)。j求证:△BPM@△CPE;k求证:PM = PN;
若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变。此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
若直线a绕点A旋转到与BC边平行的位置时,其它条件不变。请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由。
某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价l元,每天的销售量就会减少10件.写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;
每件售价定为多少元,才能使一天的利润最大
小明家所在居民楼的对面有一座大厦AB,AB=米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:
)
阅读下面的解题过程,然后解题:
已知求x+y+z的值
解:设=k,
仿照上述方法解答下列问题:
已知:
如图,AB是8O的直径,点C在BA的延长线上,直线CD与8O相切于点D,弦DF^AB于点E,线段CD=10,连接BD;求证:ÐCDE=2ÐB;
若BD:AB=
:2,求8O的半径及DF的长