甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为(时,与之间的函数图象如图所示.
(1)求甲车从地到达地的行驶时间;
(2)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;
(3)求乙车到达地时甲车距地的路程.
已知点P为线段AB的黄金分割点(AP>BP),且AB=2,求BP的长.
如图,在直角坐标系中,点A的坐标为(,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)请直接写出点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)如果点P是(2)中的抛物线上的动点,且在x轴的上方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
已知,△ABC为等边三角形,点P是射线CM上一点,连接AP,把△ACP绕点A按顺时针方向旋转60°,得△ABD,直线BD与射线CM交于点E,连接AE.
(1)如图,①求∠BEC的度数;
②若AE=2BE,猜想线段CE、BE的数量关系,并证明你的猜想;
(2)如图,若AE=mBE,求的值.
如图,在△ABC中,∠C=90°,∠A=30°,AC=6,点P是线段AC上的一动点,作PD⊥AC,垂足为P,交AB于点D,设AP=t(0<t<6).设△APD关于直线PD的对称的图形与四边形BCPD重叠部分的面积为S.
⑴点A关于直线PD的对称点A′与点C重合时,t =________;
⑵求S与t的函数关系式.
某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个. 设销售价为x元/个.
(1)该文具店这种签字笔平均每周的销售量为个(用含x的式子表示);
(2)求该文具店这种签字笔平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式;
(3)当x取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?